CIDC References


Some pointers to additional information about the Climatology Interdisciplinary Data Collection (CIDC). Please click the back button of the browser to return to your previous page.



  1. Barkstrom, B. R., E. Harrison, G. Smith, R. Green, J. Kibler, R. Cess, and the ERBE Science Team, 1989. Earth Radiation Budget Experiment (ERBE) archival and April 1985 results, Bull. Amer. Meteor. Soc., 70:1254-1262.

  2. Barry, R. G. 1984. Possible carbon dioxide-induced warming effects on the cryosphere. In: Climate Changes on a Yearly to Millennial Basis. eds. N. A. Morner and W. Karlen, pp. 571 to 604. Hingham:D. Reidel.

  3. Barry, R. G. 1985. Snow cover, sea ice, and permafrost. In: Glaciers, Ice Sheets, and Sea Level: Effect of a CO2-Induced Climatic Change, pp. 241 to 247. Washington: Dept. of Energy.

  4. Bishop, J. K. B., and W. B. Rossow, 1991: Spatial and temporal variability of global surface solar irradiance, J. Geophys. Res., 96:16,839-16,858.

  5. Bishop, J. K. B., J. McLaren, Z. Garraffo, and W. B. Rossow, 1994: Documentation and description of surface solar irradiance datasets produced for SeaWiFS, A draft document dated (10/30/94), 23 pages, available on the internet at: http://www.giss.nasa.gov/data/seawifs/

  6. Bottomley, M., C. K. Folland, J. Jsiung, R. E. Newell, and D. E. Parker, 1990: Global Ocean Surface Temperature Atlas (GOSTA), 20 + iv pp. and 313 plates, Joint Meteorol. Off./Mass. Inst. of Technol. Proj., supported by U. S. Dep. of Energy, U. S. Nat. Sci. Found., and U. S. Off. of Nav. Res., funded by UK Depts. of Energy and Environment, Her Majesty's Stationery Office, London.

  7. Bony, S., Y. Sud, K. M. Lau, J. Susskind, and S. Saha, 1997: Comparison and satellite assessment of NASA/DAO and NCEP-NCAR Reanalyses over tropical ocean: Atmospheric hydrology and radiation, J. Climate, 10:1441-1462.

  8. Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1997: Arctic and Antarctic Sea Ice Concentrations from Multichannel Passive-Microwave Satellite Data Sets: October 1978-September 1995. User's Guide. NASA TM 104647, Goddard Space Flight Center, Greenbelt, MD 20771, pp17.

  9. Cess, R. D., G. L. Potter, J. P. Blancet, G. J. Boer, A. D. Del Genio, M. Deque, V Dymnikov, V. Galin, W. L. Gates, S. J. Ghan, J. T. Kiehl, A. A. Lacis, H. Le Treut, Z.- X. Li, X.-Z Liang, B. J. McAvaney, V. P. Meleshko, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, L. Rikus, E. Roeckner, J. F. Royer, U. Schlese, D. A. Sheinir, A Slingo, A. P. Skolov, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, and M.-H Zhang, 1990: Intercomparison and interpretation of climate feedback processes in 19 Atmospheric General Circulation Models., J. Geophys. Res., 95:16601-16615.

  10. Cess, R. D., M.-H. Zhang, G. L. Potter, H. W. Barker, R. A. Colman, D. A. Dazlich, A. D. Del Genio, M. Esch, J. R. Fraser, V. Galin, W. L. Gates, J. J. Hack, W. J. Ingram, J. T. Kiehl, A. A. Lacis, H. Le Treut, Z.-X. Li, X.-Z. Liang, J.-F. Mahfouf, B. J. McAvaney, V. P. Meleshko, J.-J. Morcrette, D. A. Randall, E. Roeckner, J.-F Royer, A. P. Sokolov, P. V. Sporyshev, K. E. Taylor, W.-C. Wang, and R. T. Wetherald, 1993: Uncertainties in carbon dioxide radiative forcing in atmospheric general circulation models, Science, 262:1252-1255.

  11. Cess, R. C., M. H. Zhang, P. Minnis, L. Corsetti, E.G. Dutton, B. W. Forgan, D. P. Garber, W. L. Gates, J. J. Hack, E. F. Harrison, X. Jing, J. R. Kiehl, C. N. Long, J.-j. Morcrette, G. L. Potter, V. Ramanathan, B. Subasilar, C. H. Whitlock, D. F. Young, and Y. Zhou, 1995: Absorption of solar radiation by clouds: observations versus models, Science, 267:496-499.

    Abstract

    There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 W/m2 more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmosphere's energy budget.

  12. Chang, A. T. C., P. Gloersen, T. Schmugge, T. T. Wilheit, and H. J. Zwally. 1976. Microwave emission from snow and glacier ice. J. Glaciol. 16:23.

  13. Chang, A. T. C., J. L. l, D. K. Hall, A. Rango, and B. K. Hartline. 1982a. Snow water equivalent estimation by microwave radiometry. Cold Reg. Sci. Technol. 5:259-267.

  14. Chang, H. D. 1982b. User's Guide for Scanning Multichannel Microwave Radiometer (SMMR) Instrument First-Year Antenna Temperature Data Set. Washington: SASC.

  15. Chang, A. T. C., J. L. Foster, and D. K. Hall. 1987. Nimbus-07 SMMR derived global snow cover parameters. Ann. Glaciol. 9:39-44.

  16. Chang, A. T. C., J. L. Foster, and D. K. Hall. 1990. Satellite estimates of Northern Hemisphere snow volume. Remote Sensing Letters, International Journal of Remote Sensing, 11:1:167-172.

  17. Chang, A. T. C., J. L. Foster, D. K. Hall, H. W. Powell, and Y.L. Chien. 1992. Nimbus-7 SMMR Derived Global Snow Depth Data Set. The Pilot Land Data System. NASA/Goddard Space Flight Center. Greenbelt, MD.

  18. Darnell, W. L., W. G. Staylor, N. A. Ritchey, S. K. Gupta, and A. C. Wilber, 1996: Surface Radiation Budget: A Long-term Global Dataset of Shortwave and Longwave Fluxes, EOS Transactions, Electronic Supplement, available on the internet at: http://www.agu.org/eos_elec/95206e.html

  19. DeFries, R. S. and J. R. G. Townshend, 1994, NDVI-derived land cover classification at global scales. International Journal of Remote Sensing, 15:3567-3586. Special Issue on Global Data Sets.

  20. Dorman, J.L., and Sellers, P.J., 1989. A Global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the simple biosphere model (SiB). Journal of Applied Meteorology, 28:833-855.

  21. Food and Agriculture Organisation (FAO) of the United Nations, 1970-78, Soil map of the world, scale 1:5,000,000, volumes I- X: United Nations Educational, Scientific, and Cultural Organisation, Paris.

  22. Feldman, G., N. Kuring, C. Ng, W. Esaias, C. McClain, J. Elrod, N. Maynard, D. Endres, R. Evans, J. Brown, S. Walsh, M. Carle, and G. Podesta, 1989. Ocean Colour: Availability of the global dataset, EOS, Trans. AGU , 70:634.

  23. Foster, J. L., D. K. Hall, A. T. C. Chang, and A. Rango. 1984. An overview of passive microwave snow research and results. Rev. Geophys. 22:195-208.

  24. Foster, J. L. 1989. The significance of the data of snow disappearance on the Arctic tundra as a possible indicator of climate change. Arctic and Alpine Res. 21:1:60-70.

  25. Gupta, S. K., A. C. Wilber, W. L. Darnell, and J. T. Suttles, 1993a: Longwave surface radiation over the globe from satellite data: An error analysis, Int. J. Remote Sens., 14:95-114.

  26. Hall, D. K., J. L. Foster, and A. T. C. Chang. 1982. Measurement and modelling of microwave emission from forested snowfields in Michigan. Nordic Hydrology, 13:129-138.

  27. Hall, D. K., and J. Martinec. 1985. Remote Sensing of Ice and Snow. 189 pp. London:Chapman & Hall.

  28. Hall, D. K. 1988. Assessment of polar climate change using satellite technology. Review of Geophysics. 6:21:26-39.

  29. Hansen, J., and S. Lebedeff, 1987: Global trends of measured surface air temperature, J. Geophys. Res., 92:13,345-13,372.

  30. Hickey, J. R., L. L. Stowe, H. Jacobowitz, P. Pellegrino, R. H. Maschhoff, F. House, and T. H. Vonder Haar, 1980: Initial solar irradiance determination from Nimbus-7 cavity radiometer measurements, Science, 208:281-283.

  31. Hinton, B. B. , W. S. Olson, D. W. Martin and B. Auvine, 1992: A passive microwave algorithm for tropical oceanic rainfall, J. Appl. Meteorol., 31:1379-1395.

  32. Houghton, J. T., L. G. Meira Filho, J. Bruce, H. Lee, B. A. Callander, E. Haites, N. Harris and K. Maskell, Eds. 1995. Climate Change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios, Cambridge University Press, 339 pp.

  33. Hoyt, D. V., H. L. Kyle, J. R. Hickey, and R. H. Maschhoff, 1992. The Nimbus-7 total solar irradiance: A new algorithm for its derivation, J. Geophys. Res., 97:51-63.

  34. Huffman, G. J., R. F. Adler, P. Arkin, A. Chang., R. Ferraro, A. Gruber, J. Janowiak, A. McNab, B. Rudolf, and U. Schneider, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset, Bull. Amer. Meteor. Soc., 78:5-20.

  35. Jacobowitz, H., H. Soule, L.H. Kyle, House F.B. 1984. The Earth Radiation Budget (ERB) Experiment: An Overview. J. Geophys. Res., 89(D4):993-1011.

  36. James, M. E. and S. N. V. Kalluri, 1994. The Pathfinder AVHRR land data set: An improved coarse resolution data set for terrestrial monitoring. International Journal of Remote Sensing, Special Issue on Global Data Sets. 15(17):3347-3363.

  37. Jones, P. D., S. C.. B. Raper, R. S. Bradley, H. F. Diaz, P. M. Kelly, and T. M. L. Wigley, 1986a: Northern Hemisphere surface air temperature variations, 1851-1984, J. Clim. Appl. Meteorol., 25:161-179, 140:1292-1303.

  38. Jones, P. D., S. C. B. Raper, and T. M. L. Wigley, 1986b: Southern Hemisphere surface air temperature variations, 1851-1984, J. Clim. Appl. Meteorol., 25:1213-1230.

  39. Jones, P. D., S. C. B. Raper, C. M. Goodess, B. S. G. Cherry and T. M. L. Wigley, 1986c: A gridpoint surface air temperature data set for the southern hemisphere, U. S. Dept. of Energy, Carbon Dioxide Research Division, Washington, DC, Technical report, TR027, 73pp.

  40. Jones, P. D. 1988. The influence of ENSO on global temperatures. Climate Monitor 17(3):80-89.

  41. Jones, P. D., T. M. L. Wigley, and G. Farmer, 1991: Marine and land temperature data sets: a comparison and a look at recent trends, in, Greenhouse-Gas-induced Climatic Change: A Critical Appraisal of Simulations and Observations, M. E. Schlesinger, Ed., Elsevier Scientific Publishers, New York, 153-172.

  42. Jones, P. D., 1994: Hemispheric Surface Air Temperature Variations: A Reanalysis and an update to 1993, J. Climate, 7:1794-1804.

  43. Jones, P. D., T.J. Osborn, and K.R. Briffa 1997: Estimating sampling errors in large-scale temperature averages, J. Climate, 10:2548-2568.

  44. Lee, R. B., III, M. A. Gibson, R. S. Wilson, and S. Thomas, 1995. Long-term total solar irradiance variability during sunspot cycle 22, J. Geophys. Res., 100:1667-1675.

  45. Li, Z., L. Moreau, and A. Arking, 1997: On solar energy disposition: a perspective from observation and modelling, Bull. Amer. Meteor. Soc., 78:53-70.

  46. Los, S.O., C.O. Justice, C.J. Tucker, 1994. A global 1° x 1° NDVI data set for climate studies derived from the GIMMS continental NDVI data. International Journal of Remote Sensing, 15(17):3493- 3518.

  47. McPeters, R.D., P.K. Bhartia, A.J. Krueger, J. R. Herman, B. Schlesinger, C.G. Wellemeyer, C. J. Seftor, G. Jaross, S.L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R.P. Cebula, 1996. Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide. NASA Reference Publication 1384.

  48. Mel'nikova, I. N., and V. V. Mikhaylov, 1994: Spectral scattering and absorption coefficients in Strati derived from aircraft measurements, J. Atmos. Sci., 51:925-931.

  49. Minnis, P. and Harrison, E. F. 1984a. Diurnal Variability of regional Cloud and Clear-Sky Radiative Parameters Derived From GOES Data. Part I: Analysis Method. J. Climate & Appl. Meteorol., 23(7):993-1011.

  50. Minnis, P. and Harrison, E. F. 1984b. Diurnal Variability of regional Cloud and Clear-Sky Radiative Parameters Derived From GOES Data. Part II: November 1978 Cloud Distributions. J. Climate & Appl. Meteorol., 23(7):1012-1031.

  51. Minnis, P. and Harrison, E. F. 1984c. Diurnal Variability of regional Cloud and Clear-Sky Radiative Parameters Derived From GOES Data. Part III: November 1978 Radiative Parameters. J. Climate & Appl. Meteorol., 23(7):1032-1051.

  52. Njoku, E., B. Rague, and K. Fleming, September 1995: User's Guide to the Nimbus-7 SMMR Pathfinder Brightness temperature Dataset., Jet Propulsion Laboratory.

  53. Parker, D. E., P. D. Jones, C. K. Folland, and A. Bevan, 1994: Interdecadal changes of surface temperature since the late nineteenth century, J. Geophys. Res., 99:14:373-14,399.

  54. Pilewskie, P., and F. P. J. Valero, 1995: Direct observations of excess solar absorption by clouds, Science, 267:1626-1629.

    Abstract

    Aircraft measurements of solar flux in the cloudy tropical atmosphere reveal that solar absorption by clouds is anomalously large when compared to theoretical estimates. The ratio of cloud forcing at an altitude of 20 kilometres to that at the surface is 1.58 rather than 1.0, as predicted by models. These results were derived from a cloud radiation experiment in which identical instrumentation was deployed on co-ordinated stacked aircraft. These findings indicate a significant difference between measurements and theory and imply that the interaction between clouds and solar radiation is poorly understood.

  55. Pinker, R. T., I. Laszlo, C. H. Whitlock, and T. P. Charlock, 1995: Radiative flux opens new window on climate research, EOS, 76:145.

  56. Ramanathan, V., B. Subasilar, G. J. Zhang, W. Conant, R. D. Cess, J. T. Kiehl, H. Grassl, and L. Shi, 1995: Warm pool heat budget and shortwave cloud forcing: a missing physics?, Science, 267:499-503.

    Abstract

    Ship observations and ocean models indicate that heat export from the mixed layer of the western Pacific warm pool is small (<20 W/m2). This value was used to deduce the effect of clouds on the net solar radiation at the sea surface. The inferred magnitude of this shortwave cloud forcing was large (~-100 W/m2) and exceeded its observed value at TOA by a factor of about 1.5. This result implies that clouds (at least over the warm pool) reduce net solar radiation at the sea surface not only by reflecting a significant amount back to space, but also by trapping a large amount in the cloudy atmosphere, an inference that is at variance with most model results. The excess cloud absorption, if confirmed, has many climatic implications, including a significant reduction in the required tropics to extratropics heat transport in the oceans.

  57. Raschke, E., V. Haar, H. Thomas, W. R. Bandeen, M. Pasternak. 1973: The Annual Radiation Balance of the Earth-Atmosphere System During 1969-70 From Nimbus-3 Measurements. J. Atmos. Sci., 30(3):341-364.

  58. Reynolds, R.W. 1988. A real-time global sea surface temperature analysis. J. Climate, 1:75-86.

  59. Reynolds, R. W. and T. M. Smith, 1994: Improved global sea surface temperature analyses. J. Climate, 7:929-948.

  60. Reynolds, R. W., and T. M. Smith, 1995: A high-resolution global sea surface temperature climatology, J. Climate, 8:1571-1583.

  61. Ropelewski, C. F., and P. D. Jones, 1987. An extension of the Tahiti-Darwin Southern Oscillation Index, Mon. Wea. Rev., 115:2161-2165.

  62. Rossow, W. B., and L. C. Garder, 1993a: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP, J. Climate, 6:2341-2369.

  63. Rossow, W. B., and L. C. Garder, 1993b. Validation of ISCCP cloud detection, J. Climate, 6:2370-2393.

  64. Rossow, W. B., and R. A. Schiffer, 1991. ISCCP cloud data products, Bull. Amer. Meteor. Soc., 72:2-20.

  65. Rossow, W. B., A. W. Walker, and L. C. Garder, 1993: Comparison of ISCCP and other cloud amounts, J. Climate, 6:2394-2418.

  66. Rossow, W. B., A. W. Walker, D. E. Beuschel, and M. D. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP): documentation of new cloud datasets, draft document dated January 1996, 115 pages, available on internet at: http://isccp.giss.nasa.gov/documents.html

  67. Rudolf, B., 1993. Management and analysis of precipitation data on a routine basis. Proc. Internat. WMO/IAHS/ETH Symp. on Precipitation and Evaporation. Slovak Hydrometeorol. Inst., Bratislava, Sept. 1993, (Eds. M. Lapin, B. Sevruk), 1:69-76.

  68. Rudolf, B., H. Hauschild, W. Rueth, and U. Schneider, 1994. Terrestrial Precipitation Analysis: Operational Method and Required Density of Point Measurements. Global Precipitations and Climate Change, M. Desbois and F. Desalmand, Eds., NATO ASI Series, Vol. 1, No. 26, Springer-Verlag, 173-186.

  69. Rudolf, B., 1996. Global Precipitation Climatology Center activities. GEWEX News, vol. 6, No. 1.

  70. Schmugge, T. 1980 (a). Techniques and applications of microwave radiometry. In Remote Sensing in Geology, eds. B. S. Siegel and A. R. Gillespie, pp. 337-352. New York:John Wiley.

  71. Schmugge, T. 1980 (b). Microwave approaches in hydrology. Photogramm. Eng. Remote Sens. 46:4:495-507.

  72. Schubert, S. D., J. Pfaendtner and R. Rood, 1993. An assimilated data set for Earth Science applications, Bull. Am. Met. Soc., 74:2331-2342.

  73. Schubert, S., et al., 1995: A multiyear assimilation with the GEOS-1 System. Overview and Results, Vol. 6 of Technical report series on global modelling and data assimilation, M. J. Suarez, Ed., NASA T. M. 104606, Vol. 6, 201 pp.

  74. Sellers, P.J., S.O. Los, C.J. Tucker, C.O. Justice, D.A. Dazlich, G.J. Collatz, and D.A. Randall, 1994. A global 1° x 1° NDVI data set for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI. International Journal of Remote Sensing, 15(17):3519-3545.

  75. Sellers, P.J., D.A. Randall, C.J. Collatz, J.A. Berry, C.B. Field, D.A. Dazlich, C. Zhang, and C.D. Collelo, 1995a. A revised land surface parameterisation (SiB2) for atmospheric GCMs. Part 1: Model formulation. submitted to Journal of Climate.

  76. Sellers, P.J., S.O. Los, C.J. Tucker, C.O. Justice, D.A. Dazlich, G.J. Collatz, and D.A. Randall, 1995b. A revised land surface parameterisation (SiB2) for atmospheric GCMs. Part 2: The generation of global fields of terrestrial biophysical parameters from satellite data. submitted to Journal of Climate.

  77. Smith, G. L., R.N. Green, E. Raschke, L.M. Avis, J.T. Suttles, B.A. Wielicki, and R Davis. 1986. Inversion Methods for Satellite Studies of the Earth's Radiative Budget: Development of Algorithms for the ERBE Mission. Review Geophys., 24(2):407-421.

  78. Smithsonian Institution, 1927, 1935, 1947: "World Weather Records", Miscellaneous Collections, Volumes 79, 90, 104, Washington, D. C.

  79. Spencer, R. W., and W. D. Braswell, 1997: How dry is the tropical free troposphere? Implications for Global Warming theory, Bull. Amer. Meteor. Soc., 78:1097-1106.

  80. Stephens, G. L., and S.-C. Tsay, 1990: On the cloud absorption anomaly, Q. J. R. Meteorol. Soc., 116:671-704.

  81. Susskind, J., P. Piraino, L. Rokke, L. Iredell, and A. Mehta, 1997: Characteristics of the TOVS Pathfinder A dataset, Bull Amer. Meteor. Soc., 78:1449-14472.

  82. Suttles, J. T., R. N. Green, P. Minnis, G. L. Smith, W. F. Staylor, B. A. Wielicki, I. J. Walker, D. F. Young, V. R. Taylor and L. L. Stowe, 1988a: Angular radiation models for the Earth-atmosphere system: Vol. I: Shortwave radiation, NASA Ref. Publ. RP-1184, 147 pp.

  83. Suttles, J. T., R. N. Green, G. L. Smith, B. A. Wielicki, I. J. Walker, V. R. Taylor and L. L. Stowe, 1988b: Angular radiation models for the Earth-atmosphere system: Vol. II: Longwave radiation, NASA Ref. Publ. RP-1184, Vol. II, 87 pp.

  84. Townshend, J. R. G., 1994. Global data sets for land applications from the Advanced Very High Resolution Radiometer, International Journal of Remote Sensing, 15:3319- 3332.

  85. Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analysis, J. Climate, 8:2255-2272.

  86. U. S. Weather Bureau, 1959-1982: "World Weather Records", 1941-1950 (1361 pp.), 1951-1960 (Volumes 1-6), 1961-1970 (Volumes 1-6), U. S. Department of Commerce, Washington, D. C.

  87. Vinnikov, K. Ya., P. Ya. Groisman, and K. M. Lugina, 1990: Empirical data on contemporary global climate changes (temperature and precipitation), J. Clim., 3:662-667.

  88. Vowinkel, E., and S. Orvig. 1970. The climate in the north polar basin, in Climate of the Polar Regions, Vol. 14, World Survey of Climatology, Elsevier, Amsterdam, pp. 129-252.

  89. WCRP, 1990. The Global Precipitation Climatology Project - Implementation and Data Management Plan. WMO/TD-No. 367, Geneva, June 1990, 47 pp. and appendices.

  90. Webb, R.S., C.E. Rosenzweig, and E.R. Levine, 1993. Specifying land surface characteristics in general circulation models: soil profile data set and derived water-holding capacities, Global Biogeochemical Cycles, 7:97-108.

  91. Wentz, F. J., 1992. Measurement of oceanic wind vector using satellite microwave radiometers, IEEE Transactions on Geoscience and Remote Sensing, 30:960-972.

  92. Whitlock, C. H., T. P. Charlock, W. F. Staylor, R. T. Pinker, I. Laszlo, A. Ohmura, H. Gilgen, T. Konzelman, R. C. DiPasquale, C. D. Moats, S. R. LeCroy, and N. A. Ritchey, 1995: First global WCRP shortwave surface radiation budget data set, Bull. Am. Meteorol. Soc., 76:905-92.

  93. Wielicki, B. A., and R. N. Green, 1989: Cloud identification for ERBE radiative flux retrieval, J. Appl. Meteor., 28:1131-1146.

  94. Wielicki, B. A., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison, 1995: Mission to Planet Earth: role of clouds and radiation in climate, Bull. Amer. Meteor. Soc. , 76:2125-2153

  95. Willson, R. C., 1984. Measurements of solar total irradiance and its variability, Space Science Reviews, 38:203/242.

  96. Willson, R. C., 1994. Irradiance observations of SMM, Spacelab 1, UARS, and Atlas experiments, in The Sun as a Variable Star, edited by J. M. Pap, C Frohlich, H. S. Hudson and S. K. Solanki, Cambridge University Press, Cambridge, England, 54-62.

  97. WMO/ICSU, 1990: The Global Precipitation Climatology Project- Implementation and Data Management Plan. WMO/TD-No. 367, Geneva, June, 1990.

  98. WMO, 1985. Review of requirements for area-averaged precipitation data, surface-based and space-based estimation techniques, space and time sampling, accuracy and error; data exchange. WCP-100, WMO/TD-No. 115, 57 pp. and appendices.

  99. Woodruff, S. D., R. J. Slutz, R. J. Jenne, and P. M. Steurer, 1987: A comprehensive ocean-atmosphere data set, Bull. Am. Meteorol. Soc., 68:1239-1250.

  100. Zobler, L., 1986. A world soil file for global climate modelling. NASA Tech. Memo. 87802, NASA, 33pp.