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ABSTRACT

The authors describe the construction of a 0.58 lat–long gridded dataset of monthly terrestrial surface climate
for the period of 1901–96. The dataset comprises a suite of seven climate elements: precipitation, mean tem-
perature, diurnal temperature range, wet-day frequency, vapor pressure, cloud cover, and ground frost frequency.
The spatial coverage extends over all land areas, including oceanic islands but excluding Antarctica. Fields of
monthly climate anomalies, relative to the 1961–90 mean, were interpolated from surface climate data. The
anomaly grids were then combined with a 1961–90 mean monthly climatology (described in Part I) to arrive
at grids of monthly climate over the 96-yr period.

The primary variables—precipitation, mean temperature, and diurnal temperature range—were interpolated
directly from station observations. The resulting time series are compared with other coarser-resolution datasets
of similar temporal extent. The remaining climatic elements, termed secondary variables, were interpolated from
merged datasets comprising station observations and, in regions where there were no station data, synthetic data
estimated using predictive relationships with the primary variables. These predictive relationships are described
and evaluated.

It is argued that this new dataset represents an advance over other products because (i) it has higher spatial
resolution than other datasets of similar temporal extent, (ii) it has longer temporal coverage than other products
of similar spatial resolution, (iii) it encompasses a more extensive suite of surface climate variables than available
elsewhere, and (iv) the construction method ensures that strict temporal fidelity is maintained. The dataset should
be of particular relevance to a number of applications in applied climatology, including large-scale biogeo-
chemical and hydrological modeling, climate change scenario construction, evaluation of regional climate models,
and comparison with satellite products. The dataset is available from the Climatic Research Unit and is currently
being updated to 1998.

1. Introduction

The description of the mean state and variability of
recent climate is important for a number of purposes in
global change research. These include monitoring and
detecting climate change, climate model evaluation, cal-
ibration of or merging with satellite data, biogeochem-
ical modeling, and construction of climate change sce-
narios (New et al. 1999). Datasets of surface climate,
which describe variability in space and time (Hulme
1992; Jones 1994; Easterling et al. 1997), historically
have had incomplete spatial coverage and have been of
coarse resolution ($2.58 lat–long). This is because their
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primary purposes, which are monitoring current climate
(and its historic perspective), climate change detection,
and general circulation model (GCM) evaluation, do not
necessarily require spatially continuous fields or higher
resolution.

There has been a growing demand for datasets with
high spatial (e.g., 0.58 lat–long) and temporal (e.g.,
monthly or daily) resolution that are also continuous
over the space–time domain of interest. Potential ap-
plications for such datasets include understanding the
role of climate in biogeochemical cycling (Dai and Fung
1993; Cramer and Fischer 1996), climate change sce-
nario construction (Carter et al. 1994; Hulme et al. 1995)
and high-resolution climate model evaluation (Chris-
tensen et al. 1997). Yet there currently are few datasets
that satisfy the requirement of high spatio–temporal res-
olution. Notable exceptions are the monthly 1971–94
Global Precipitation Climatology Project (GPCP) da-
taset (Rudolf et al. 1994; Xie and Arkin 1996; Xie et
al. 1996; Huffman et al. 1997); the monthly 1900–88,
2.58 lat–long precipitation dataset of Dai et al. (1997a,
hereinafter DAI); and the 0.58 lat–long daily dataset
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being developed by Piper and Stewart (1996, hereinafter
PS). However, these products either cover relatively
short periods (1970s–present—GPCP, PS), are limited
to precipitation (GPCP, PS, DAI) and maximum and
minimum temperature (PS), do not include an elevation
dependence in their interpolation schemes (GPCP, PS,
DAI), or have a relatively coarse resolution (DAI). A
further limitation is that GPCP and PS interpolate di-
rectly from station time series: their methodology has
to overcome difficulties in interpolating monthly climate
over complex terrain and they cannot make use of the
more extensive network of station climatological nor-
mals to define a mean climatology (see below).

In this paper, we describe the construction of a new
dataset of monthly surface climate over global land ar-
eas, excluding Antarctica, for the period of 1901–96.
The dataset is gridded at 0.58 lat–long resolution and
comprises a suite of seven variables, namely, precipi-
tation, wet-day frequency, mean temperature, diurnal
temperature range, vapor pressure, cloud cover, and
ground frost frequency.

In constructing the monthly grids, we used an ‘‘anom-
aly’’ approach, which attempts to maximize available
station data in space and time (New et al. 1999). In this
technique, grids of monthly anomalies relative to a stan-
dard normal period (in our case, 1961–90) were first
derived. The anomaly grids were then combined with a
high-resolution mean monthly climatology to arrive at
fields of estimated monthly surface climate. We used
the 0.58 lat–long 1961–90 climatology described in a
companion paper (New et al. 1999) for this purpose.

The advantage of this approach is that the number of
archived and easily obtainable station normals is far
greater than that of station time series, particularly as
one goes back in time. Using as many stations as pos-
sible to generate the mean fields together with an explicit
treatment of elevation dependency maximizes the rep-
resentation of spatial variability in mean climate.
Monthly anomalies, on the other hand, tend to be more
a function of large-scale circulation patterns and rela-
tively independent of physiographic control. Therefore,
a comparatively less extensive network can be used to
describe the month-to-month departures from the mean
climate.

We have divided the seven climatic elements into two
groups, primary and secondary variables. The former,
comprising precipitation, mean temperature, and diurnal
temperature range, was considered to have sufficient
station coverage to attempt the derivation of grids di-
rectly from station anomalies for the entire period of
1901–96. The interpolation of the primary variable
anomaly grids is covered in the first half of this paper,
where we also compare our dataset of primary variables
over a few selected regions with some other existing
long-term, but coarsely gridded, datasets.

Station networks with time series of secondary var-
iables, namely, wet-day frequency, vapor pressure,
cloud cover, and ground frost frequency, were insuffi-

cient for the derivation of anomaly fields directly from
station data. We therefore used empirical relationships
to derive synthetic anomalies from the gridded anom-
alies of primary variables and merge these with station
anomalies of secondary variables over regions where
such data were available. The merged anomalies were
then combined with the 1961–90 normal grids men-
tioned above, thereby standardizing the anomalies
against high-resolution observed data. This approach is
described in more detail in the second half of the paper,
along with an evaluation of the various empirical re-
lationships. We end the paper with a discussion of the
merits and limitations of this new dataset and our con-
clusions.

2. Primary variables

a. Datasets

Three global station datasets compiled by the Cli-
matic Research Unit (CRU) form the basis for the con-
struction of the gridded anomalies of primary variables.
The precipitation (Eischeid et al. 1991; Hulme 1994,
updated) and mean temperature (Jones 1994, updated)
station data have been compiled by the CRU over the
last 20 yr. The diurnal temperature range dataset is based
on the Global Historical Climatology Network (GHCN)
maximum and minimum temperature data (Easterling et
al. 1997) but has been updated for more recent years
by CRU and enhanced with additional station data ob-
tained by the CRU and the U.K. Meteorological Office
(Horton 1995, updated). The original data have been
subjected to comprehensive quality control over the
years, as described by the above authors. Updates for
more recent years and additional station data collated
by the CRU have also been checked for homogeneity
and outliers.

The CRU precipitation data have not been corrected
for gauge biases, the most significant of which is un-
dercatch of solid precipitation in colder areas. Under-
catch also varies with gauge type, so periodic instrument
changes can therefore result in inhomogeneties in the
records. The correction of individual records requires
detailed local meteorological and station metainforma-
tion, which are not readily available.

The station networks for all three variables exhibit a
gradual increase in the total number of stations from
1901 to about 1980, after which the numbers decline
(Figs. 1–3). The recent reduction in station numbers is
primarily in areas with good or reasonable station cov-
erage. However, the spatial coverage of stations re-
porting diurnal temperature ranges shows a more serious
reduction in the 1990s. This, in due course, should be
alleviated by the inclusion of mean monthly maximum
and minimum temperature in the post-1995 monthly
CLIMAT reports and by updated datasets for the former
USSR and China, once they are included in the CRU
dataset.
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FIG. 1. Distribution of precipitation stations in the CRU dataset for the indicated years. Shaded areas show 0.58 grid cells that have a
station within 450 km of the cell center.

FIG. 2. Distribution of mean temperature stations in the CRU dataset for the indicated years. Shaded areas show 0.58 grid cells that have
a station within 1200 km of the cell center.
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FIG. 3. Distribution of diurnal temperature range stations in the CRU dataset for the indicated years. Shaded areas show 0.58 grid cells
that have a station within 750 km of the cell center.

The station density that is required to adequately de-
scribe monthly spatial variability is characteristically
greater for precipitation than for diurnal temperature
range and mean temperature. For example, Dai et al.
(1997a) found that zonally averaged interstation cor-
relation distances for annual precipitation fall to an in-
significant level (;0.36 for N 5 30) at 200 km for 08–
308N, 400 km for 308–608N, 300 km for 608–908N, 550
km for 08–308S, and 800 km for 308–608S. This com-
pares with distances of between 1200 km and 2000 km
for mean temperatures reported by Hansen and Lebedeff
(1987) and Jones et al. (1997).

We build on the approach of Dai et al. (1997a) and
define the correlation decay distance (CDD) as the dis-
tance at which zonally averaged interstation correlation
is no longer significant at the 95% level (;0.36 for N
5 30). Our own analyses, using station records with at
least 30 yr of data, indicate that the larger CDDs in the
Southern Hemisphere reported by Dai et al. (1997a) do
not occur when monthly precipitation anomalies are
considered (Fig. 4). Indeed, we find similar CDDs for
comparable latitude bands in the Northern and Southern
Hemispheres (350–400 km for 08–308N/S and 400–500
km for 308–608N/S), although northern CDDs are no-
ticeably shorter in the Northern Hemisphere summer. In
addition, CDDs exhibit seasonality, particularly in the
case of temperature where winter CDDs are much great-
er than in summer (Jones et al. 1997). Diurnal temper-
ature range CDDs are intermediate between those of
precipitation and mean temperature. We use globally

averaged CDDs for each variable during the interpo-
lation of monthly anomaly grids described in the next
section.

b. Anomaly interpolation

Prior to interpolation, each station time series was
converted to anomalies relative to the 1961–90 mean.
Series with less than 20 yr of data during 1961–90 were
excluded from the analysis. Anomalies for mean tem-
perature and diurnal temperature range were expressed
in absolute units (i.e., 8C) while precipitation was ex-
pressed as a percentage of the 1961–90 mean. We used
percentage units for precipitation because the variance
of precipitation is closely related to the mean. Inter-
polation in percentage units preserves this relationship
better than interpolation in absolute units. Other trans-
formations that preserve the variance are also possible,
such as expression in units of standard deviation (Jones
and Hulme 1996) or in terms of some other distribution
(e.g., Diaz et al. 1989; Hutchinson 1995b). Of all these
transformations, absolute and percentage anomalies are
the simplest particularly because the reexpression into
absolute monthly units requires only a mean field.

We investigated several methods to interpolate the
monthly station anomalies to a regular 0.58 lat 3 0.58
long grid. These included surface-fitting procedures
such as thin-plate splines (Wahba 1990; Hutchinson and
Gessler 1994; Hutchinson 1995a) and minimum-cur-
vature splines (Franke 1982), Delaunay triangulation,
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FIG. 4. Zonally averaged monthly CDDs for precipitation (solid),
mean temperature (dots), and diurnal temperature range (dashes).

Thiessen (1911) polygon area averaging, and angular-
distance weighted averaging (Shepard 1984; Willmott
et al. 1985). We found that the surface-fitting procedures
(splines) were generally unsuitable for interpolation of
anomaly fields because of the sharp spatial disconti-
nuities that occur, particularly for precipitation. When
the spline interpolation was parameterized to capture
these abrupt spatial jumps in precipitation (i.e., to have
a high surface roughness), the fitted surfaces exhibited
considerable undershoot and overshoot in regions with
poor station control. Conversely, when the interpolation
was parameterized to have low surface roughness, un-
dershoot and overshoot was reduced but at the expense
of excessive smoothing and a reduced variance in the
gridded monthly fields. This is in contrast to our ex-
perience in the interpolation of climatological normals
(Part 1, New et al. 1999), where gradients in long-term
climate are more continuous in longitude–latitude–ele-

vation space and hence more amenable to surface fitting
procedures.

Triangulation and Thiessen polygon interpolation are
computationally efficient but employ a limited number
of data points in the estimation of gridpoint values and
take no account of station distance. Angular distance–
weighted (ADW) interpolation can make use of any
(user defined) number of stations and employs a distance
weighting function so that stations closest to the grid
point of interest carry greater weight. Gridpoint esti-
mates from triangulation, Thiessen, and ADW methods
cannot exceed the magnitude of highest/lowest value in
the contributing data points and are therefore not subject
to undershoot and overshoot. We compared triangula-
tion, Thiessen, and ADW interpolation and found that
ADW performed better in areas with sparse data because
the distance weighting produced a less-irregular grid,
which is a result of the combination of a greater number
of stations used in determining a gridpoint average and
the use of distance weighting. Consequently, ADW was
used to interpolate the monthly anomalies.

Interpolation using distance weighting has a number
of variants in both the selection of stations that con-
tribute to a gridpoint estimate and the form of the dis-
tance weighting function (Shepard 1984; Dai et al.
1997a; Piper and Stewart 1996). We use the eight nearest
stations, regardless of direction or distance, in estimat-
ing each grid point, which results in a radius of influence
that varies with station density. This is similar to the
approach adopted by Piper and Stewart (1996), who use
a variable influence radius so that between 5 and 10
stations are always used to estimate a gridpoint value.
A consequence of this varying influence radius is that
the grid roughness can increase in areas where the sta-
tion density and the spatial variability of the anomalies
are high (if the anomaly data have a lower spatial var-
iability, the grid roughness will not be as great, even
where the station density is high). A special case occurs
where there are more than eight stations within a single
0.58 grid cell and the radius of influence is consequently
less than the grid-cell extent. However, there are only
three grid cells where the data density in our dataset is
high enough for this to occur (and this is only in the
data-rich 1960s and 1970s), and this is, therefore, a
negligible problem. Weights for the eight stations were
determined in a two-stage process. All stations are first
weighted by distance from the grid point, with the em-
pirically derived CDD controlling the rate at which the
weight decreases with distance from the grid point. A
correlation decay function can be defined (Jones et al.
1997) as

r 5 ,2x/x0e

where x0 is the CDD and x is the distance from the grid
point of interest. Thus, for any grid point and any sta-
tion, k, a distance weight can be defined by

wk 5 rm.
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The weight, therefore, decays more steeply for lower
CDDs and for higher values of m. We tested several
values of m using cross validation against withheld sta-
tion data and found that the predicted values were rel-
atively insensitive to values of m between 1 and 8 [Dai
et al. (1997a) report a similar finding for their distance
weighting scheme]. However, a value of 4 for m was
found to produce the lowest cross validation error. Low-
er values of m resulted in too much smoothing while
higher values reduced the influence of more distant
points.

The second component of the distance weight was
determined by the directional (angular) isolation of each
of the nj data points selected:

n nj j

a 5 w [1 2 cosu (k, l)] w , l ± k,O Ok l j l@l51 l51

where uj(k, l) is the angular separation of data points k
and l, with the vertex of the angle defined at grid point
j, calculated in spherical coordinates and wl is the dis-
tance weight at data point l. The angular and distance
weights are then combined to arrive at an angular–dis-
tance weight:

Wk 5 wk(1 1 ak).

Interpolation as a function of latitude and longitude,
as in ADW, ignores the influence of elevation. As noted
earlier, a large proportion of the spatial variation in
monthly temperature anomalies is a function of large-
scale circulation features and is relatively independent
of topography (New et al. 1999). Interpolation of mean
temperature and diurnal temperature range as a function
of only latitude and longitude is therefore adequate. This
is not necessarily true for precipitation, where inclusion
of elevation as a copredictor has been shown to improve
the accuracy of the anomaly interpolation in some sit-
uations (M. F. Hutchinson 1997, personal communica-
tion). However, the ADW gridding employed in this
study did not permit the inclusion of elevation as a
predictor. Elevation could have been included using a
trivariate interpolation technique such as splines or co-
kriging, but these would have resulted in the smoothing
problems described above. Moreover, the inclusion of
elevation as a predictor invokes a penalty by markedly
reducing the degrees of freedom available for defining
a fitted surface. It was only over Europe, the United
States, and southern Canada that there were sufficient
stations to overcome this limitation. For the above rea-
sons, it was decided not to use elevation but to employ
the same ADW interpolation in all regions.

As discussed earlier, a station is unlikely to provide
useful information about the variable of interest at grid
points beyond its CDD. To prevent extrapolation to un-
realistic values, the interpolated anomaly fields were
forced toward zero at grid points beyond the influence
of any stations. This was accomplished by creating syn-
thetic stations with anomaly values of zero in regions

where there were no stations within a predefined dis-
tance chosen to be equal to the global-mean CDD. These
distances were 450 km for precipitation, 750 km for
diurnal temperature range, and 1200 km for mean tem-
perature. Figures 1–3 show the areas for selected years
where there are no stations within these distances. Al-
though globally averaged CDDs were used, there is
scope for the application of latitudinally or spatially
varying CDDs, and this will be considered in future
versions of the dataset.

c. Combination with climatology

We combined the interpolated anomaly fields for each
month from 1901 to 1996 with the CRU 0.58 1961–90
mean monthly climatology (New et al. 1999) to arrive
at monthly grids of surface climate. This combined da-
taset is henceforth referred to as CRU05. The CRU
1961–90 climatology was constructed with this purpose
in mind and has a number of advantages over other
climatologies; chief among these is that it is strictly
constrained to the period 1961–90. This permitted the
addition of the anomaly fields, which were standardized
against the 1961–90 period, without any biases arising
from temporal sampling mismatches. The CRU clima-
tology is also the only published climatology of global
land areas that includes all of the climate elements in
the anomaly dataset.

In some areas with more-sparse station coverage, the
1961–90 average of the monthly anomaly grids diverged
from zero, for example, over Angola and the Democratic
Republic of the Congo. This arose directly from the
interpolation error in the individual anomaly fields,
which, not unexpectedly, did not add up to zero. To
maintain consistency, individual fields from 1961 to
1990 were adjusted so that their 1961–90 mean was
zero by subtracting this mean interpolation error.

It should be noted that a direct consequence of the
relaxation of the anomaly surfaces to zero in regions
with no data coverage is that the resulting monthly cli-
mate relaxes toward the 1961–90 climatology in such
areas. This characteristic of the dataset is discussed in
more detail elsewhere in the paper.

d. Evaluation

Major sources of error in gridded datasets of this
nature are instrumental (isolated errors, systematic er-
rors, and inhomogeneity), inadequate station coverage,
and interpolation errors (Groisman et al. 1991; Dai et
al. 1997a; Jones et al. 1999). Isolated errors and subtle
inhomogeneities not detected during quality control do
not have a significant effect at the regional scale. How-
ever, such errors are noticeable at grid points near the
offending station, particularly if the network is sparse.
Inadequate station coverage is the largest source of error,
but there is little that can be done about this except to
ensure that the existing data are error free and that the
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interpolation methodology makes maximum use of the
available data.

Extensive evaluation of the CRU05 gridded data is
beyond the scope of this paper. An intercomparison of
CRU05 precipitation and several other long-term in-
strumental and shorter-term satellite and/or gauge-based
datasets is the focus of a separate study (Hulme et al.
2000, manuscript submitted to J. Climate). In this sec-
tion, a limited comparison with two precipitation, one
mean temperature, and one diurnal temperature range
dataset, is presented to highlight the differences that can
arise due to differing station networks and/or interpo-
lation approaches.

1) PRECIPITATION

Regional time series derived from CRU05 and two
other precipitation datasets were compared over two
rectangular regions with good and poor station cover-
age, respectively: the United Kingdom (498N, 118W–
618N, 38E) and the Amazon basin (158S, 708W–58N,
408W). The other two datasets are those of Hulme (1994,
updated) (HULME) and Dai et al. (1997a), (DAI) both
of which have a spatial resolution of 2.58 lat–long. These
were the only two other global datasets of monthly pre-
cipitation covering the period of 1901–96 known to the
authors. Both these datasets were produced by inter-
polation of station anomalies using a Thiessen polygon
(HULME) and spherical inverse-distance weighted ap-
proach (DAI), respectively. While HULME grid points
are estimated using only those within the grid box, DAI
grid points employ an influence radius of 350 km to
select data. However, HULME uses a spherical angular
distance weighting with an influence radius of 600 km
to infill missing data at individual stations prior to the
Thiessen gridding process.

Area-averaged time series for the two regions were
constructed using the approach recommended by Jones
and Hulme (1996). Gridpoint data were transformed to
anomalies from the 1961–90 mean and expressed in
standard deviation units. These were then averaged with
a latitudinal weighting and back-transformed to milli-
meter units using the regionally averaged 1961–90
monthly means and standard deviations. The CRU05
dataset was first averaged to 2.58 resolution, again using
a latitudinal weighting. Both DAI and CRU05 were
masked using HULME, ensuring that these more spa-
tially complete datasets do not have more grid points
than HULME. In fact, at times, the masked DAI grids
had fewer grid points than HULME because (i) the DAI
land–sea mask is slightly different from that of HULME
and (ii) at the beginning and end of the record, DAI
had fewer contributing stations than HULME, resulting
in fewer grid points with data.

The resulting regional time series of annual precipi-
tation, expressed as anomalies relative to the 1901–96
mean, are shown in Fig. 5. In both regions, the three
datasets agree in broad detail but exhibit some differ-

ences. Most notably, the CRU05 time series tends to have
lower interannual variance than the other two, as exhib-
ited by overlapping 20-yr coefficients of variation (CVs;
see Fig. 5). We ascribe these differences primarily to
different station selection criteria in the interpolation
schemes. As noted earlier, HULME only makes use of
those stations situated within a 2.58 grid cell. DAI used
all stations that fall within 350 km of the grid point,
which results in a larger search radius (about 38 at the
equator) than HULME. In contrast, we select the eight
nearest stations, with more distant stations having ex-
ponentially decreasing influence. Consequently, in re-
gions where there are fewer than eight stations within
the selection region of HULME or DAI, CRU05 will be
derived from more stations that are also more dispersed,
both of which will tend to reduce the variance of the
derived gridpoint values. This occurs at most grid points
in the Amazon and at several in the United Kingdom.

In the Amazon region, all the series exhibit increased
interannual variance at the beginning and end of the
record. This appears to be a real signal that is reflected
in the raw station data (see Fig. 5). However, HULME,
and particularly DAI, show a steeper rise in interannual
variance than CRU05 at the beginning of the record.
This difference arises for two reasons. First, prior to
1930 and especially before 1910, there are very few
contributing stations to HULME and CRU05 (and pre-
sumably DAI). Thus, for HULME and DAI, gridpoint
estimates are derived from only a few stations or only
a single station, which serves to increase the gridpoint
variance. This does not occur for CRU05, where each
gridpoint average remains a function of the eight con-
tributing stations. If anything, the CRU05 variance will
be reduced as more distant stations are included (albeit
with low weights) in data-sparse years. The second
cause of increased variance is the reduction in the num-
ber of grid points contributing to the Amazon series.
Prior to 1910, there are only two grid points for HULME
(and CRU05, when masked) and only one for DAI
(when masked with HULME). Thus, the regional series
approach a single gridpoint series, which will have high-
er variance than a multigridpoint series.

Also shown in Fig. 5 are the regional series derived
from the complete CRU05 grid (i.e., not masked by
HULME) over each region. In the United Kingdom, this
is very similar to the masked CRU05 series because of
the near-complete grid coverage in HULME throughout
the series. In the Amazon, the complete and masked
CRU05 series diverge markedly at the beginning and,
to a lesser extent, the end of the century. In the masked
series, only a few grid points in the central Amazon
have data, and the greater number of grid points with
data in the southeast part of the region bias the series.
This southeast region coincidentally has a higher inter-
annual variance than the Amazon, so in early years
where there are few grid points in the central Amazon,
this heightened variance dominates the masked series.
In contrast, the spatially complete series retains an equal
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FIG. 5. Regional time series of annual precipitation anomalies relative to 1961–90 average and their 20-yr
overlapping CV over the Amazon basin and the United Kingdom. Both DAI and CRU05 were masked using the
HULME grid. For the Amazon, the dashed curve in is the overlapping CV of the annual precipitation series
derived from the 40 stations in the CRU dataset that fall within the Amazon window and have data present before
1915 and after 1980. The series was constructed by simply averaging the annual totals of all contributing stations.

contribution from each grid point throughout the cen-
tury, and the low-variance central Amazon reduces the
effect of the southeast in all years.

The southeast Amazon is also the source of the in-
creased variance in the station-based series at the be-
ginning and end of the century (Fig. 5). This produces
a larger increase in the variance of the masked series at
the beginning of the century because the counteracting
effect of the central Amazon is minimal (few grid points
with data). At the end of the record, the increased var-
iance in the southeast does not have such an influence

because there is relatively good coverage over the rest
of Amazon.

Figure 5 also provides a qualitative indication of the
error that may be potentially associated with gridded
precipitation datasets. All three have been generated us-
ing datasets that have many stations in common but with
different interpolation methods. Where the station net-
work is poor, contrasting interpolation methods can pro-
duce quite varied results. Where the network is good,
the three datasets tend to converge, but the CRU05 grids
produce regional time series with slightly lower inter-
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FIG. 6. Regional time series of annual temperature anomalies relative to 1961–90 average and their 20-yr running
standard deviations over the Amazon basin and the United Kingdom. The series were derived in the same manner
as Fig. 5.

annual variance. This reduced variance would appear to
be the cost of interpolation to produce spatially contin-
uous fields in data-sparse regions.

2) MEAN TEMPERATURE

Regional time series of mean annual temperature were
calculated from the CRU05 dataset and the dataset of
Jones (1994, updated; hereinafter JONES) for the Unit-
ed Kingdom and Amazon (Fig. 6). This was accom-
plished in the same way as precipitation except that the
gridded data were transformed to degrees Celsius rather

than standard deviation anomalies prior to area aver-
aging. The station network is sparse over the Amazon,
with a maximum of 25 stations, but drops off to 2
(JONES) and between 6 and 7 (CRU05) before 1950.
Although the two series are well correlated, CRU05 is
less variable and diverges (warm offset) quite markedly
from JONES before 1950. This is primarily due to the
presence of fewer stations in JONES; annual time series
for the Amazon produced by Victoria et al. (1998) from
a similar set of stations to CRU05 agree better with
CRU05 than JONES over this period (not shown). Over
the period with relatively good station coverage (1950–
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90), the interannual variability of JONES markedly in-
creases while that of CRU05 remains relatively constant.
Changes in the variance of both grid box and regional
time series of temperature is to be expected from the
method used by JONES (see discussion in Jones et al.
1997), while the CRU05 methodology is less sensitive
to varying station networks.

The U.K. time series from each dataset are very sim-
ilar, although CRU05 is slightly warmer than JONES
over the period of 1930–60. This is most likely because
JONES has specifically excluded several stations that
exhibit marked urban warming (e.g., Dublin and Kew)
which are used in CRU05. The effect of these stations
is diluted after 1960, when approximately 100 additional
U.K. stations come into the CRU05 dataset. Before
1960, CRU05 and Jones had a similar station network.
Interannual variability of the two series is also very
similar, although CRU05 tends to have slightly lower
variance after 1960 when the number of stations in-
creases to over 100 (cf. ;20 for JONES). As with pre-
cipitation, this example indicates that results from the
two gridding methodologies converge with increasing
station coverage.

On a hemispheric and global basis, CRU05 agrees
well with JONES. The major differences between the
two occur before about 1940 (Fig. 7), with CRU05 being
about 0.18C warmer and 0.18–0.28C cooler than JONES
in the Northern and Southern Hemispheres, respectively.
Hemispheric averages are subject to some uncertainty
due to sampling errors. Jones et al. (1997) have recently
quantified these errors, which increase in the past when
station coverage was sparser. In Fig. 7, the standard
errors are shown as a shaded band and are calculated
using the approach of Jones et al. (1997) but are limited
to the land domains under study here. This was achieved
by averaging the Jones et al. (1997) 58 3 58 grid-box
standard errors over the domain of interest using their
Eqs. (11) and (12). The number of spatial degrees of
freedom was reduced by one-third (one-half ) for the
Northern (Southern, north of 608S) Hemisphere to allow
for the degrees of freedom that occur over the (excluded)
ocean. It can be seen from Fig. 7 that it is only at the
very beginning of the century that the CRU05 masked
time series are more than one standard error different
from JONES.

The differences between CRU05 and JONES are part-
ly related to the extrapolation to data-sparse regions
where CRU05 is relaxed toward the (warmer) 1961–90
mean when there are no stations within the correlation
decay distance. This explanation is supported, in both
hemispheres, by the larger, warmer offset associated
with the time series calculated from the full CRU05 grid
(i.e., including areas relaxed to 1961–90), compared to
those calculated from the masked CRU05 grid. How-
ever, the relaxation to the 1961–90 mean does not ex-
plain the cooler bias in the masked CRU05 series in the
Southern Hemisphere. In this case, the offset may be
due to the use of different (but overlapping) station net-

works. JONES is constructed using only station time
series where urban warming bias is minimal whereas
CRU05 makes use of all available station data. In earlier
years, over the Southern Hemisphere, urban stations
made a greater relative contribution to the CRU05 net-
work and may have produced the larger negative offset.
This effect does not appear to be as marked in the North-
ern Hemisphere, probably because of the more extensive
network of nonurban stations and the fact that urban
warming was already under way to some extent in the
first half of the century.

3) DIURNAL TEMPERATURE RANGE

The Northern Hemisphere time series of diurnal tem-
perature range derived from CRU05 were compared
with those derived from the dataset of Easterling et al.
(1997; hereinafter EAST) for the period of 1950–93
(Fig. 8). Note that the CRU05 series is constructed using
the full Northern Hemisphere fields because there was
no information on the space–time distribution of grid
boxes with data in EAST. Both series show the marked
decreasing trend in diurnal temperature range from 1950
to 1993 reported by Easterling et al. (1997), though
CRU05 does not show as large a negative anomaly as
EAST in 1993; this is, however, the year with the most
sparse station coverage in both datasets. Prior to 1940,
the CRU05 record is dominated by station data in North
America and Russia and shows a similar trend to the
combined long-term records from these regions reported
by Karl et al. (1993). Some of the decrease in CRU05
prior to 1940 is also due to the relaxation toward the
1961–90 mean (lower) in regions that have no station
control but nonetheless contribute to the hemispheric
mean.

3. Secondary variables

a. Datasets

The datasets of secondary variables (wet-day fre-
quency, vapor pressure, cloud cover, and ground frost
frequency) held by CRU are less comprehensive than
those of the primary variables. This is partly because
CRU has only recently made efforts to obtain these
variables but also because they are less widely measured
than temperature and precipitation, particularly in earlier
years. To date, station time series for some or all of the
secondary variables have been acquired from some 70
different sources. Several of these are public domain or
available for purchase, but many have been obtained
through personal contacts or directly from national me-
teorological agencies (NMAs). These datasets are up-
dated on an ad hoc basis as new data are obtained and
more regularly with monthly CLIMAT reports (wet-day
frequency, vapor pressure, and sunshine).

The distribution of stations in the CRU dataset from
1901 to 1995 is shown in Figs. 9–11. Cloud cover over
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FIG. 7. Time series of annual temperature anomalies (relative to the 1961–90 average) for global land areas
excluding Antarctica, Northern Hemisphere land areas, and Southern Hemisphere land areas excluding Antarctica.
In each case, the upper panel contains the time series and the lower panel contains the difference between CRU05
and JONES. The shaded area represents 61 standard error of the JONES time series (see Jones et al. 1997 for
details).
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FIG. 8. Time series of annual diurnal temperature range anomalies (relative to the 1961–90 average) for (top) the
Northern Hemisphere from CRU05 and EAST (solid 5 CRU05; dotted 5 EAST) and (bottom) the difference between
the two series.

FIG. 9. Distribution of cloud cover stations in the CRU dataset for the indicated years. Shaded areas show 0.58 grid cells that have
stations within 750 km of the cell center.



1 JULY 2000 2229N E W E T A L .

FIG. 10. Distribution of vapor pressure stations in the CRU dataset for the indicated years. Shaded areas show 0.58 grid cells that have a
station within 1000 km of the cell center.

FIG. 11. Distribution of wet-day frequency stations in the CRU dataset for the indicated years. Shaded areas show 0.58 grid cells that
have a station within 400 km of the cell center.

the northern mid–high latitudes is fairly comprehensive
from the 1950s onward, but is virtually nonexistent else-
where, except for the 1980s, where the Hahn et al.
(1994) global synoptic station dataset makes a major
contribution. This will be significantly enhanced when
the updated (1950s–1995) Hahn synoptic data are re-
leased in 1999 (C. Hahn 1998, personal communica-
tion).

The network of stations with vapor pressure and wet-

day frequency exhibits a similar pattern to that of cloud
cover but does not benefit from the inclusion of synoptic
data in the 1980s or from data from the United States
(efforts are currently under way to obtain long-term U.S.
data), western Europe, China (for vapor pressure), and
Australia. Both these datasets will be enhanced once
data from the Monthly Climatic Data for the World/
CLIMAT are incorporated, a process that is presently
under way.
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FIG. 12. Zonally averaged monthly correlation decay distances for
cloud cover (solid), wet-day frequency (dots), and vapor pressure
(dashes).

Station data for ground frost frequency (not shown)
are restricted to the former Soviet Union, Canada, the
United Kingdom, and a few other locations where access
to daily ground/grass minimum temperature permitted
the calculation of these time series.

We calculated CDDs for cloud cover, vapor pressure,
and wet-day frequency at latitudes where the stations
network permitted (Fig. 12; 608S–908N for cloud cover,
08–908N for wet-day frequency, and 308–908N for vapor
pressure). Cloud cover CDDs range between 500 km at
mid–high latitudes and ;1000 km at low latitudes, with
a global average of ;750 km. Vapor pressure exhibits
similar CDDs to mean temperature, both in terms of
distances (1000–2000 km) and their seasonal cycle, sug-
gesting that the two are a function of the same large-
scale circulation forcings. Wet-day frequency decay dis-
tances are ;500 km at low–mid northern latitudes and
;300 km at high northern latitudes, mirroring the lat-
itudinal variation of precipitation CDDs.

b. Empirical relationships with primary variables

The patchy distribution of stations with secondary
variable data, particularly prior to 1960, meant that in-
terpolation of anomalies directly from station data was
not feasible. This is despite the large CDDs determined
for cloud cover and, particularly, vapor pressure. We
therefore used the existing data to develop and/or test
empirical (in the case of cloud cover and ground frost
frequency) or conceptual (vapor pressure and wet-day
frequency) relationships with the primary variables.
These relationships were used to calculate grids of syn-
thetic monthly anomalies. In the case of cloud cover,
wet-day frequency, and vapor pressure, the synthetic
grids were then blended with station anomalies in the
regions where such data were available. Finally, the
resultant anomaly fields were combined with the CRU
0.58 1961–90 mean climatology fields.

1) CLOUD COVER

The negative correlation between diurnal temperature
range and both precipitation and cloud cover has been
well documented at both regional/global scales (e.g.,
Karl et al. 1993; Dai et al. 1997b) and at individual
weather stations (e.g., Wang et al. 1993; Ruschy et al.
1991). We used this as the starting point for the devel-
opment of a predictive relationship for cloud cover.

Station anomaly time series of cloud cover, precipi-
tation, and diurnal temperature range were grouped into
58 lat–long bins. Monthly cloud cover in each bin was
regressed on diurnal temperature range and precipita-
tion. In general, cloud cover correlated better with di-
urnal temperature range than precipitation (Fig. 13). The
strong correlation between precipitation and diurnal
temperature range (not shown) also meant that the in-
clusion of both climate elements in the regression re-
sulted in little additional variation in cloud cover being
explained. As a rule, correlation with diurnal temper-
ature range is weak in arid regions due to a general
absence of cloud cover. Notable exceptions were the
arid west coasts of Africa and South America, where
low cloud–fog associated with advection is frequent.
The relationship between diurnal temperature range and
cloud cover is also weak at around 608N in winter and
becomes positive in the Arctic. This is probably because
the extreme cold and the absence of incoming solar
radiation during high-latitude winters result in minimal
modulation of surface energy balance by cloud cover.
At these high latitudes, the correlation between precip-
itation and cloud cover is slightly stronger.

We discarded precipitation from further analysis be-
cause of the generally better relationship between di-
urnal temperature range and cloud cover. A further rea-
son for using only one predictor variable arises from
the way the grids of primary variables (which form the
input in the calculation of synthetic fields) were pro-
duced. In years before ;1950, both precipitation and
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FIG. 13. Strength of correlation between monthly cloud cover and the two primary variables, (top) diurnal
temperature range and (bottom) precipitation, for Jan and Jul. Positive and negative correlations are black
and white, respectively.
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FIG. 14. Example of data points used in the interpolation of cloud cover anomalies in Jan 1971. Pluses and
dots represent real station data and synthetic data, respectively.

diurnal temperature range fields are forced toward the
1961–90 mean in regions where there is no station con-
trol (discussed earlier). This occurs more frequently
with diurnal temperature range than precipitation. Using
a regression against diurnal temperature range and pre-
cipitation could produce unrealistic synthetic cloud val-
ues where one of the predictor variables was constrained
to zero and the other was not.

At each 58 lat–long bin for which there were data,
we used resistant regression (Emerson and Hoaglin
1983) to determine a predictive relationship with diurnal
temperature range. Resistant regression is insensitive to
isolated data errors, which is useful when the analysis
is automated for a large number of data samples. We
then interpolated the monthly regression coefficients to
a regular 0.58 lat–long grid, assuming the coefficients
for each 58 bin represented point values at the bin center.
The 0.58 lat–long grids of diurnal temperature range
anomalies were subsequently used as input to calculate
synthetic cloud cover anomaly grids. We evaluated the
resulting synthetic grids by degrading them to 2.58 lat–
long resolution and comparing them to the 1982–91
monthly cloud cover grids of Hahn et al. (1994). Month-
ly gridpoint correlations (not shown) for the 10 yr of
data in common are similar to those in Fig. 13 (top),
indicating that the use of diurnal temperature range grids
captures the majority of covariance between cloud cover
and diurnal temperature range that occurs at individual
stations.

Gridpoint data from the synthetic anomaly grids were
used as artificial station data in areas where there were
no station control, defined as a distance farther than 700
km from any observed data. Figure 14 provides an ex-
ample of the resultant network of artificial and real sta-
tions. The combined station and synthetic data were
interpolated using the method described in section 2b
to produce anomaly grids at 0.58 lat–long resolution and
subsequently combined with the CRU05 climatological

mean fields to produce monthly grids of cloud cover for
1901–96.

Because diurnal temperature range is relaxed to the
1961–90 mean in areas where there are no station data,
the cloud cover grids exhibit similar behavior. Thus,
prior to 1950, over most regions in the northern Tropics
and Southern Hemisphere, the CRU05 cloud cover grids
approach the 1961–90 climatology and have little or no
interannual variability.

2) VAPOR PRESSURE

The relatively large CDDs for vapor pressure suggest
that there is value in interpolating anomalies from sta-
tion data where they are present and using synthetic
data in regions without vapor pressure data.

The vapor pressure network was extended to include
coverage over China, Sumatra, and Bolivia by con-
verting time series of monthly relative humidity and
mean temperature to vapor pressure (e) using the stan-
dard formula of Shuttleworth (1992):

17.27T
e 5 6.108 exp hPa and (1)s 1 2237.3 1 T

e 5 RHe , (2)s

where T is the mean monthly temperature, es is the
saturated vapor pressure at T, and RH is the relative
humidity (fraction).

While recognizing the problems inherent in convert-
ing monthly relative humidity to vapor pressure (see
also New et al. 1999), it was felt that the approach was
justified because their expression as anomalies removes
much of the systematic bias arising from the conversion
and station data are preferable to the alternative, namely,
synthetic data.

Minimum temperature can be used to estimate dew-
point temperature and hence vapor pressure by substi-
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tution in (1). This has been justified because dewpoint
temperature and nighttime minimum temperature tend
to come into equilibrium and dewpoint temperature re-
mains relatively constant during the day. The assump-
tion becomes unreliable in arid regions, where conden-
sation does not occur during nighttime and minimum
temperature consequently remains well above dewpoint
temperature (Kimball et al. 1997). Kimball et al. (1997)
derived an empirical method of estimating daily dew-
point temperature that utilizes information about poten-
tial evaporation and precipitation, which produced im-
proved estimates in arid regions of the United States:

T 5 T [20.127 1 1.121(1.003 2 1.444EFdew min

2 31 12.312EF 2 32.766EF )

1 0.0006DTR], (3)

where EF equals PE/PREANN, PE is the daily potential
evaporation estimated using the Priestly and Taylor
(1972) formulation, PREANN is the annual precipitation,
and DTR is the diurnal temperature range.

We investigated whether their method was appropri-
ate for estimating monthly vapor pressure by using the
observed monthly data described above. We compared
the correlation between observed vapor pressure and
vapor pressure predicted using minimum temperature
and Kimball’s estimate of dewpoint temperature. We
found that in comparison with the use of minimum tem-
perature, Kimball’s method did not explain any addi-
tional variance in observed vapor pressure in the regions
for which we had observed data. In addition, in many
instances, Kimball’s formula produced worse predic-
tions of vapor pressure in warmer months at more arid
sites. This suggests that the general form of the rela-
tionship does not apply to monthly data. Although a
different relationship may exist for monthly data, we
did not have dewpoint temperature data to attempt the
definition of such a relationship. We therefore used the
gridded minimum temperatures as a proxy for dewpoint
temperature and hence synthetic gridpoint vapor pres-
sure, using (1).

The accuracy of the derived monthly estimates was
evaluated using the CRU monthly time series of min-
imum temperature and vapor pressure. Stations with
common year months of these variables were extracted
and the vapor pressure was estimated using (1). The
estimated and observed vapor pressure were then ex-
pressed as percentages of their respective means prior
to the calculation of comparative statistics on a month-
by-month basis. Correlation coefficients for January and
July are shown in Fig. 15 (other months are intermediate
between these two). In general, the method works better
in winter than in summer and, for any particular month,
better at high latitudes than at low latitudes. The method
is least effective in arid regions, notably in central Asia
and northwest China, most probably for reasons dis-
cussed above. Results from China are subject to addi-

tional uncertainty arising from the conversion of ob-
served relative humidity to vapor pressure.

A similar procedure to that used for cloud cover was
followed to derive blended grids of monthly vapor pres-
sure. Monthly grids of the primary variables were used
in (1) to derive grids of synthetic vapor pressure. The
synthetic values were converted to anomalies relative
to the 1961–90 synthetic mean. Synthetic gridpoint data,
farther than a CDD of 1000 km from any observed
station data, were combined with the dataset of observed
anomalies and interpolated using ADW gridding. The
resulting blended anomaly fields were added to the
CRU05 1961–90 mean climatology to arrive at monthly
grids of surface vapor pressure for 1901–96.

3) WET-DAY FREQUENCY

Synthetic values for wet-day frequency were calcu-
lated using the following conceptual relationship with
precipitation:

WD 5 (aPRE)x, (4)

where
1/x(WD )na 5 (5)

PREn

and x 5 0.45, WD is the estimated wet-day frequency,
PRE is the monthly precipitation, WDn is the 1961–90
mean monthly wet-day frequency, and PREn is the
1961–90 mean monthly precipitation.

Defining a as in (5) forces predicted wet-day fre-
quency to equal the 1961–90 mean when monthly pre-
cipitation is equal to the 1961–90 mean precipitation
(Fig. 16). A value of 0.45 for x in (4) was chosen by
selecting the value that resulted in the smallest mean
absolute error between predicted and observed wet-day
frequency in the CRU dataset of station time series. At
individual stations, the optimum value of x varied be-
tween ;0.35 and ;0.6. Synthetic wet-day frequency
values were constrained to be zero (if there was no
observed precipitation) and were set always to be no
greater than the number of days in the month.

The accuracy of the relationship was assessed using
observed time series of precipitation and wet-day fre-
quency in the CRU station dataset. The correlation be-
tween observed and predicted time series varies between
0.35 and 0.96 (Figs. 17 and 18). The correlation is better
in humid than in subhumid regions and, at most stations,
better in winter than in summer, where precipitation
tends to be more frontal than convective. Predictive er-
ror exhibits a trend from positive bias at low observed
wet-day frequency to negative bias at high observed
wet-day frequency (Fig. 18). This is partly a function
of the formulation of (4) and the upper limit (number
of days in month) for synthetic wet-day frequency. Thus,
at an observed frequency of 1, the error cannot be less
than 21 but can have any positive value, leading to an
overall positive bias. Conversely, when the observed
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FIG. 15. Jan and Jul correlation (Pearson’s r) between station time series of observed and synthetic vapor pressure calculated
using dewpoint temperature estimated from minimum temperature. Station data were converted to percent anomalies prior to
calculation of the correlations. Data were then grouped into 58 lat–long bins, and the lowest, median, and highest correlation
of all stations in the bin are plotted (the size of the symbols corresponds to the strength of correlation). If fewer than four
stations fall into a bin, correlations for all stations are shown.

frequency is equal to the number of days in the month,
positive errors are not possible, resulting in an overall
negative bias.

As with the other secondary variables, the synthetic
anomaly fields were merged with observed station
anomalies and combined with the 1961–90 climatology
to arrive at grids of monthly wet-day frequency from
1901 to 1996.

4) GROUND FROST FREQUENCY

There are very few ground frost frequency station
data in the CRU dataset. Consequently, a purely em-
pirical approach was used to generate monthly grids of
this variable. Previous work had identified a good pre-
dictive relationship between mean monthly ground frost
frequency and minimum temperature (New et al. 1999).
Reanalysis of the data used by New et al. (1999) resulted
in an improved prediction:

100 T # 214mn50 1 50 cos[7.5(T 1 14 2 DT )]mn mn
F 5 (6)

214 , T , 10mn
0 T $ 10, mn

where DTmn is 0.32|12 2 |Tmn 1 2| |, F is the estimated
ground frost frequency in percent, and Tmn is the min-
imum temperature in Celsius.

The suitability of (6) for predicting monthly ground
frost frequency was tested against observed monthly
time series from 120 stations in the United Kingdom
(Fig. 19). Most of the predictions are within 610% of
the observed values, with a tendency for overestimation
and underestimation at low and high observed frequen-
cies, respectively. Reasons for this are essentially the
same as those producing a similar pattern for wet-day
frequency. Correlations between observed and ground
frost frequency are lowest in summer because, at any
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FIG. 16. Example of the relationship used to predict wet-day frequency from monthly
precipitation for a station in the United Kingdom.

FIG. 17. Correlation for Jan and Jul between observed wet-day frequency station time series and those
predicted using precipitation.

station, there are fewer months with both observed and
simulated ground frost frequency days greater than zero.

For the calculation of monthly ground frost frequency
fields, (6) was used with gridded minimum temperature
(i.e., mean temperature minus one-half diurnal temper-
ature range) to generate synthetic ground frost frequency
anomaly fields. These were subsequently added to the
CRU05 climatology to arrive at monthly ground frost
frequency grids in absolute units for 1901–96. Thus,
ground-frost frequency is the only secondary variable

derived entirely from synthetic anomalies and not
merged with observed station data.

4. Discussion

We have described the construction of a spatially
complete gridded dataset of monthly surface climate
comprising seven variables over global land areas for
the period of 1901–96. These data represent an advance
over previous products for several reasons.
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FIG. 18. Validation statistics for the relationship used to predict wet-day frequency from monthly
precipitation. (a) Predicted–observed errors as a function of observed monthly wet-day frequency.
(b) Range of predicted–observed correlation coefficients for stations in the CRU wet-day fre-
quency dataset. Thick line 5 median, medium lines 5 quartiles, and thin lines 5 10th percentile.

FIG. 19. Validation statistics for the prediction of monthly ground frost frequency using monthly
minimum temperature at 120 stations in the United Kingdom. (a) Predicted–observed errors as a
function of observed ground frost frequency. (b) Distribution of predicted–observed correlations
at individual stations. Thick line 5 median, medium lines 5 upper and lower quartiles, and thin
lines 5 10th and 90th percentiles. In summer months for which quartiles and percentiles are not
shown, there were not enough stations with frost occurrence to permit their calculation.

R The dataset has a higher spatial resolution (0.58 lati-
tude by 0.58 longitude) than other datasets of similar
temporal extent.

R Conversely, it extends much farther back in time than
other products that have similar spatial resolution.

R It encompasses a more extensive suite of surface cli-
mate variables than available elsewhere, namely,
mean temperature and diurnal temperature range, pre-
cipitation and wet-day frequency, vapor pressure,
cloud cover, and ground frost frequency.

R The construction method ensures that strict temporal
fidelity is maintained; the anomalies are calculated
using the same 1961–90 period as the mean clima-
tology to which they are applied.

These time series are of particular use in applied cli-
matology, as spatially continuous input data to envi-
ronmental simulation models. Examples include mod-
eling biogeochemical cycling in terrestrial ecosystems
and global/regional hydrological modeling. In addition,
the primary variables—precipitation, mean tempera-
ture, and diurnal temperature range—are derived en-
tirely from observed station data and represent a good

independent dataset for evaluation of regional climate
models (e.g., Giorgi and Francisco 2000) and satellite-
derived products. The mean temperature fields are not
ideally suited for climate change detection because the
input dataset includes stations that have an urban warm-
ing bias. The secondary variable fields—wet-day fre-
quency, vapor pressure, cloud cover, and ground frost
frequency—were constructed using a combination of
observed data and empirical relationships with the pri-
mary variables. Therefore, these secondary variables
should be used with caution in such climatological ap-
plications. Nonetheless, for the first time, the secondary
variables provide a century-long record of spatially
complete surface climate data.

For the primary variables, a direct consequence of
the anomaly interpolation methodology is relaxation of
the monthly fields toward the 1961–90 mean in regions
where there are no stations within the correlation decay
distance. This occurs most often in earlier years, par-
ticularly for diurnal temperature range. To provide an
indication of where this occurs, each monthly field has
a companion field listing the distance from each grid
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center to the nearest station. Future research is intended
to develop ways of avoiding relaxation to the 1961–90
mean. One possibility is to develop 10-yr mean cli-
matologies for 1901–present from station data that are
available and constrain missing data to the relevant 10-
yr mean. This would ensure that secular change in, for
example, temperature is reflected in the monthly time
series data. An alternative would be to fill in missing
station data in early years prior to interpolation. This
could be done using regression (or an alternative pre-
diction method) with stations that do have long-term
data.

Diurnal temperature range can be used in combination
with mean temperature to calculate grids of maximum
and minimum temperature. The resulting gridded time
series will include all of the variability contained in the
mean temperature grids plus additional variability in
diurnal temperature range where station data permit. In
domains where monthly diurnal temperature range is
relaxed to the climatology, maximum and minimum
temperature will only reflect variability in mean tem-
perature.

For the secondary variables, the interpolation of
merged station and synthetic data makes it more difficult
to provide an indication of where a monthly field is
based on (i) observed data, (ii) synthetic data derived
from primary variables with interannual variability, or
(iii) synthetic data derived from primary variables that
had been relaxed to the climatology. However, as with
the primary variables, companion grids of grid points
to nearest station distances were calculated. If these are
used in combination with the station information for the
primary variables that were used to derive the synthetic
grids, some idea of the contributing inputs can be ob-
tained. For a more qualitative indication, the maps’ sta-
tion distributions in Figs. 1–3 (primary variables) and
Figs. 9–11 (secondary variables) can be used.

The CRU05 dataset is available from the Climatic
Research Unit via Dr. David Viner (d.viner@uea.ac.uk),
manager of the Climate Impacts LINK Project (http://
www.cru.uea.ac.uk/link).
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